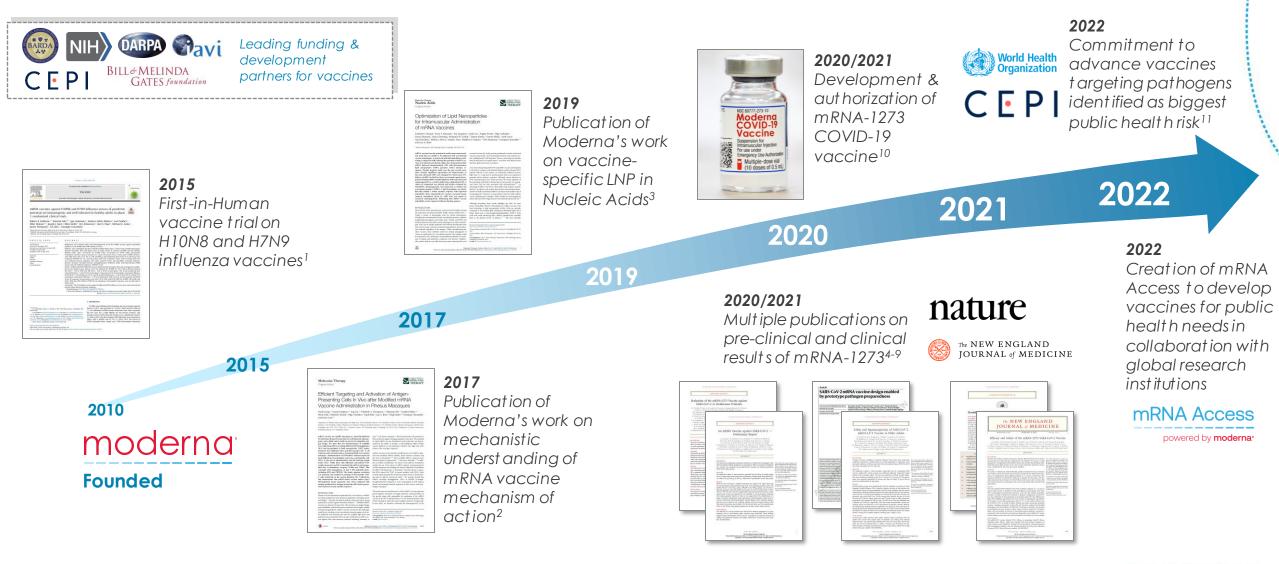
The Application of Moderna's mRNA Platform for Public Health

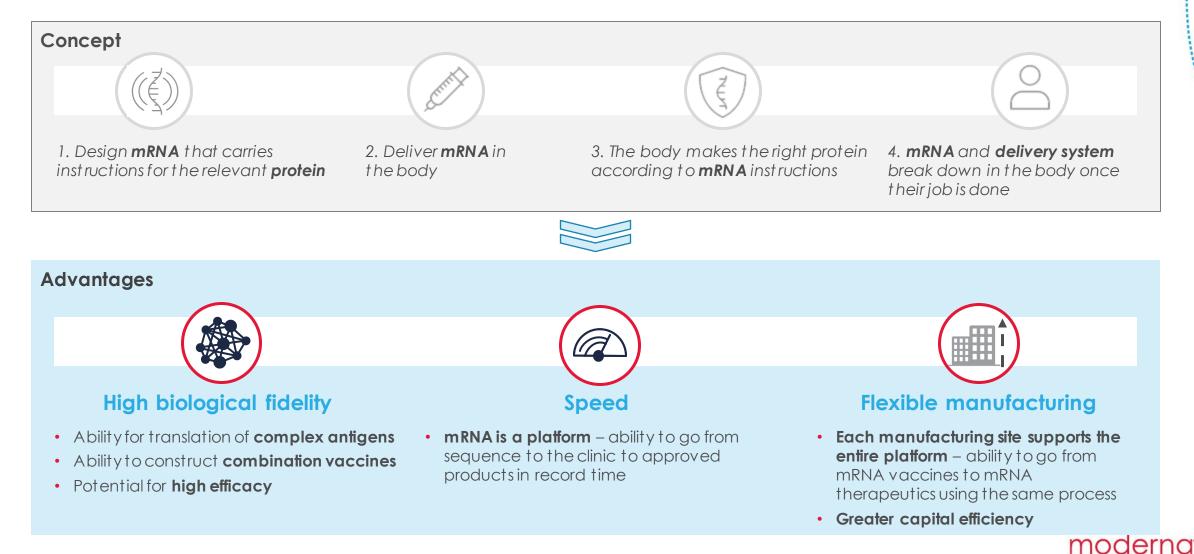
Andrea Carfí, PhD


CSO, Infectious Diseases

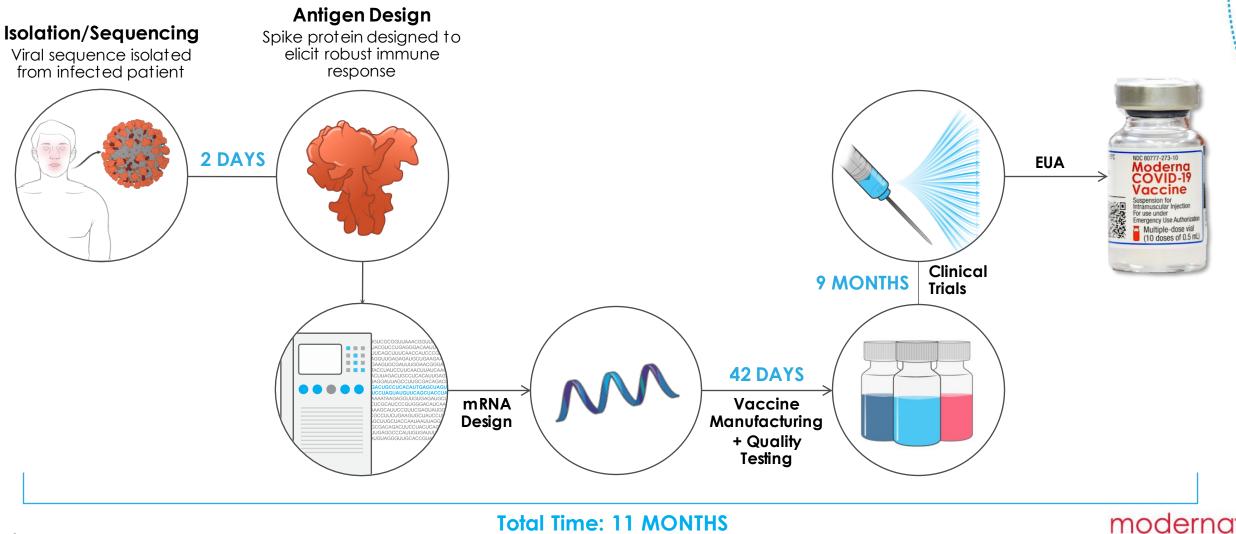
Moderna Inc.

mmn

Moderna mRNA platform is well positioned for pandemic response



1. Feldman et al. Vaccine. 2019;37:3326-3334; 2. Liang et al. Mol Ther. 2017;25:2635-2647; 3. Hassett et al. Mol Ther Nucleic Acids. 2019;15:1-11; 4. Corbett et al. N Engl J Med. 2020;383:1544-1555; 5. Jackson et al. N Engl J Med. 2020;383:1920-1931; 6. Corbett et al. Nature. 2020;586:567-571;7. Anderson et al. N Engl J Med. 2020;383:2427-2438; 8. Widge et al. N Engl J Med. 2021;384:80-82; 9. Baden et al. N Engl J Med. 2021;384:403-416; 10. Moderna. mRNA-1273 SmPC. https://www.ema.europa.eu/en/documents/product-information/spikevax-previously-covid-19-vaccine-moderna-epar-product-information_en.pdf. Accessed 20 Oct 2022;; 11. Moderna Announces its Global Public Health Strategy https://investors.modernaty.com/news/news-details/2022/Moderna-Announces-Its-Global-Public-Health-Strategy/default.aspx Accessed 19 Oct 2022



2

The mRNA platform is transformational, comes with key advantages and is designed to have global impact

The development of Moderna's COVID-19 vaccine (mRNA-1273) showed unprecedented speed of the mRNA platform

Moderna has a diverse pipeline with a large focus on respiratory and latent viruses

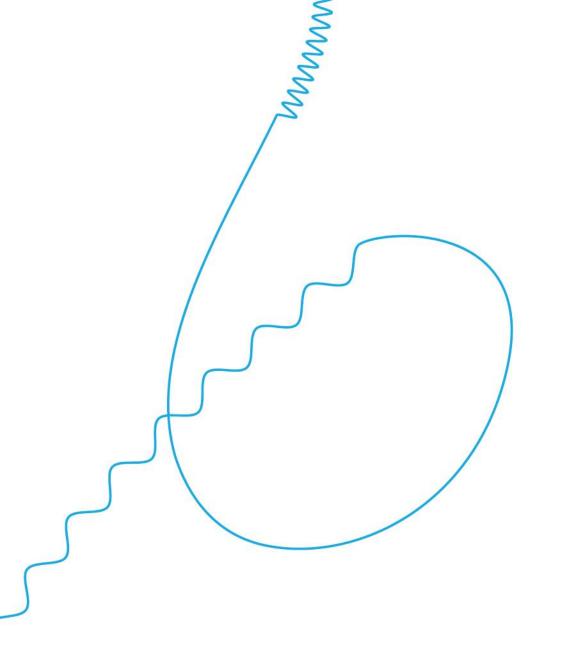
				Preclinical	Phase I	Phase II	Phase III	Commercial
			COVID-19	1			1	3
	19		Flu	1	1	4	1	
SU	17		Respiratory syncytial virus (RSV)		1		1	
ran		Respiratory	Combinations		4		1	
s og S			Cytomegalovirus (CMV)				1	
it pi		\frown	Epstein–Barr virus (EBV)		2			
Dis	7		HIV		2			
sno			Varicella zoster virus (VZV)			1		
ctic (elo		Latent	Herpes simplex virus (HSV)			1		
Infectious Disease Development programs			Global health threats		4	1		
	6	Emerging	Norovirus		2			
		programs	Lyme		2			

15 Non-infectious disease programs (e.g., rare diseases, oncology, cardiovascular and autoimmune)

47 Total development programs at Moderna

Number of programs: Lower

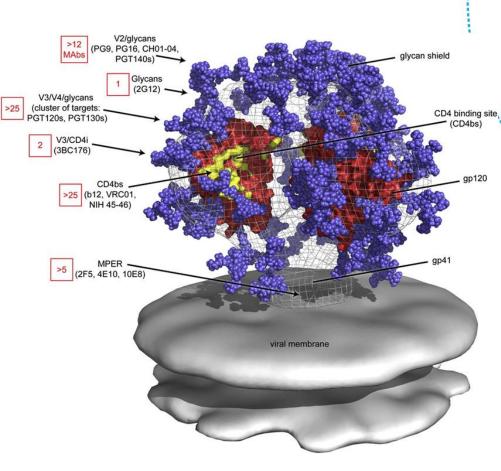
Higher


The mRNA platform is uniquely suited to address persistent and emerging threats

Priority Pathogen	ID #	Preclinical Dev	Phase 1	Phase 2	Phase 3	Commercial	Collaborators
COVID-19	mRNA-1273						BARDA/NIAID
MERS-CoV							
Pandemic flu (H5, H7)	mRNA-1018						
(ika	mRNA-1893						BARDA
Chikungunya	mRNA-1388						
lipah	mRNA-1215						NIH
Мрох	mRNA-1769						
Ebola							UTMB/JPEO
Marburg							UTMB/JPEO
assa							UTMB/JPEO
CCHF							
Rift Valley Fever							
SFTS							KNIH
ΗV	mRNA-1644						IAVI / Others
HIV	mRNA-1574						IAVI/BMGF/NIAID & Others
Dengue							
Malaria							
Tuberculosis							-

© 2022 Moderna, inc. Confidential. All rights reserved.

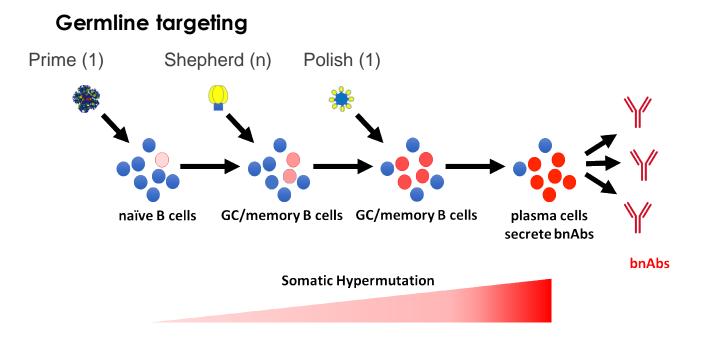
6



HIV Prophylactic vaccine

Broadly neutralizing antibodies (bnAbs) prevent HIV acquisition

- Small number of HIV+ individuals develop bnAbs that bind highly conserved regions on the HIV env
- bnAbs can neutralize a large set of HIV isolates (up to 99% of global isolates)
- Combination of bnAbs can provide complete protection against HIV acquisition in NHPs although high concentration is required for protection
- Passive administration of recombinant bnAbs has been shown prevent acquisition of bnAb sensitive HIV strains in humans (AMP trial)
- Vaccine that elicits bnAbs would be highly cost effective over PrEP or passive Immunization

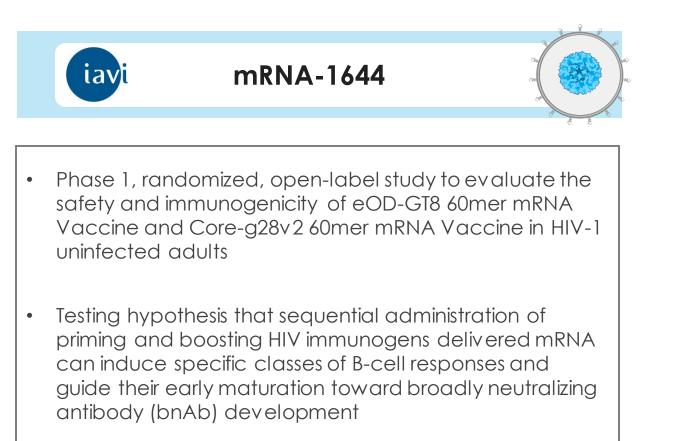


Development of an HIV vaccine through immune programming

Approaches to elicit bnAbs through vaccination

- Germline targeting : Use engineered immunogens to target specific B cells that are known to develop in bnAbs
- Immunofocusing : Vaccination with conserved epitope scaffolds. E.g., Fusion peptide

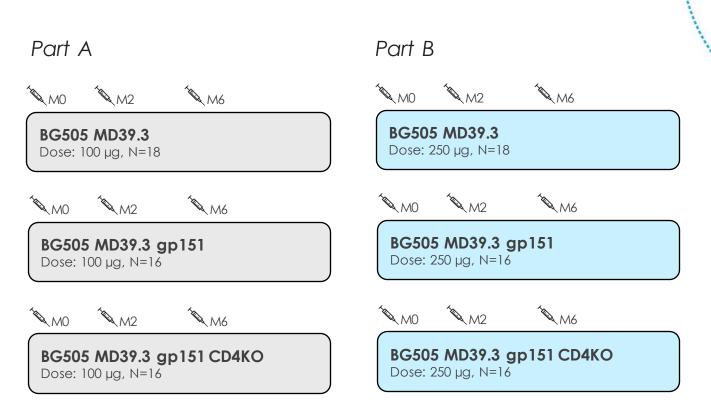
Priming: Prime with engineered env antigens that bind certain B-cell lineages/germlines with high affinity (*1 dose*)


Shepherding: Boost memory B cells using heterologous env antigen/s to accumulate somatic hypermutations (SHMs)

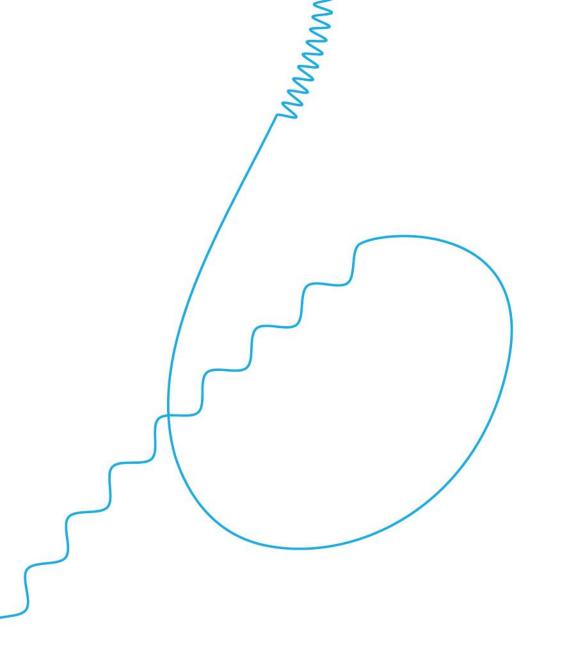
Polishing: Final boost with native-like env trimer to elicit bnAbs (1 dose)

- Germline targeting will require heterologous prime boost using different versions of HIV env antigen to guide the immune response through bnAb development
- Number of shepherding antigens depend on number of SHMs required and can vary between bnAbs

HIV Vaccine (mRNA-1644): Germline targeting approach

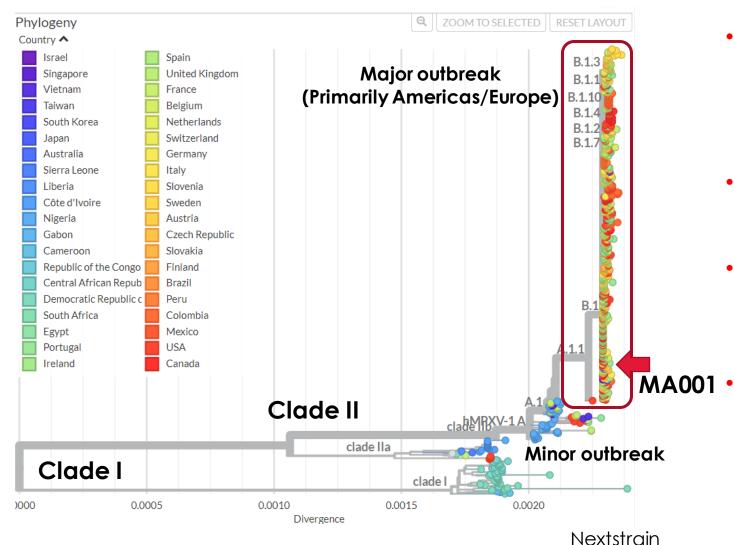

Phase 1 Trial Design **М**2 MO eOD-GT8 60mer N=16 MO M2 eOD-GT8 60mer+ Core-q28v260mer N=16 56 Adults 1 M4 1 MO M2 (18–50 years) eOD-GT8 60mer + eOD-GT8 60mer + Core-g28v260mer N=16 MO Core-g28v260mer N=8

moderno

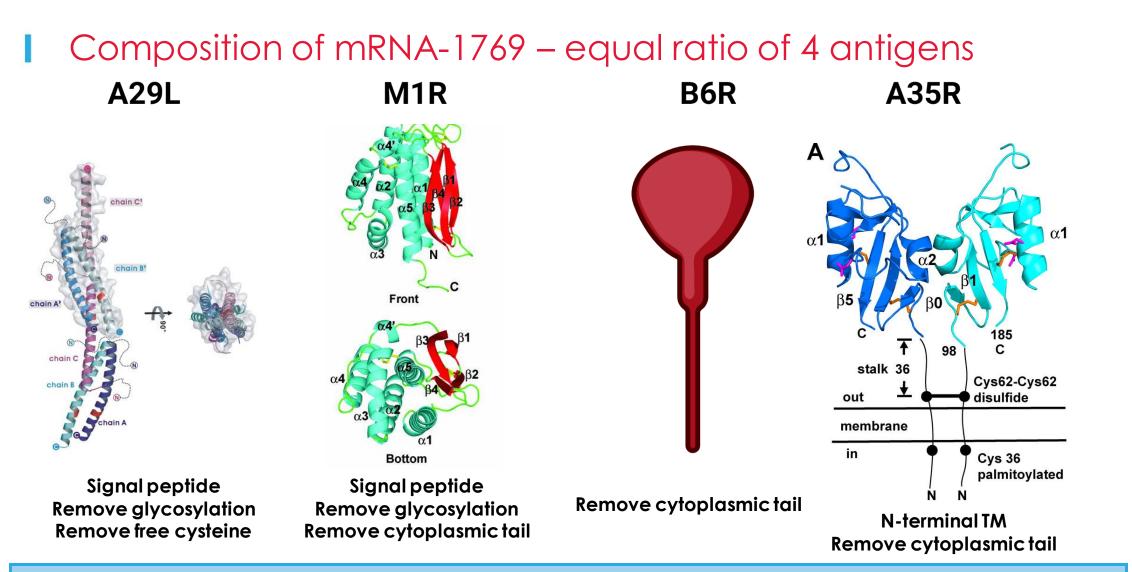

HIV Vaccine (mRNA-1574): Trimer study

- Open-label, multicenter, randomized Phase 1 study to evaluate the safety and immunogenicity of experimental HIV trimer mRNA vaccines (BG505 MD39.3, BG505 MD39.3 gp151, and BG505 MD39.3 gp151 CD4KO)
- Primary hypothesis is that the soluble and membrane-bound HIV envelope trimer mRNA v accines will be safe and well-tolerated by HIV-uninfected individuals and will elicit autologous neutralizing antibodies

Phase 1 Trial Design



Monkeypox vaccine


© 2022 Moderna, inc. Confidential. All rights reserved.

Current view of the Mpox virus (MPXV) phylogeny

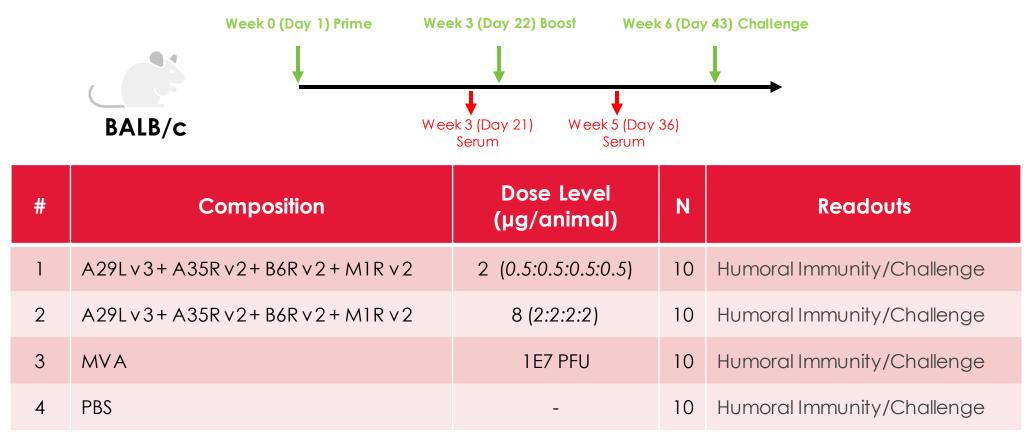
- Clade I viruses localize to Central Africa and tend to be more lethal, Clade II viruses localize to Western Africa and display more mild disease
- Almost all 2022 genomes belong to the Clade IIb
- There is very little or no diversity in the ongoing outbreak (<0.0001 per base substitution rate)
- **101** All of our vaccine antigens come from MA.001, which was the most complete genome assembly at the time of antigen design

mRNA-1769 is a 1:1:1:1 mass ratio of A29L:M1R:B6R:A35R

- Based on literature support that combination of these four subunits are protective in animal models
- o Designs have been produced to optimize these antigens for mRNA expression

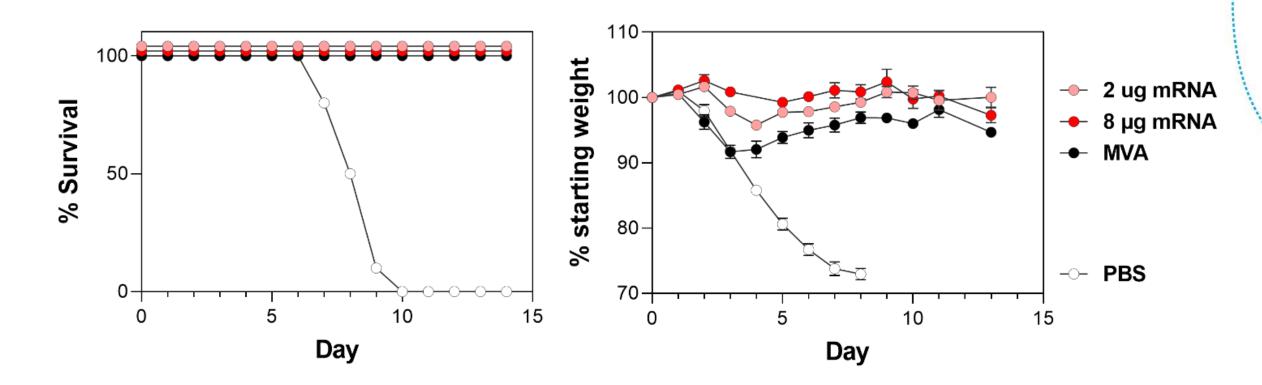
moderna

Percent identity of chosen Orthopoxvirus antigens


A29	MPXV	VACV	VARV	B6	MPXV	VACV	VARV
MPXV	100	93.64	93.64	MPXV	100	96.21	92.43
VACV		100	96.36	VACV		100	92.43
VARV			100	VARV			100

A35	MPXV	VACV	VARV	M1	MPXV	VACV	VARV
MPXV	100	94.48	91.67	MPXV	100	98.80	99.20
VACV		100	94.02	VACV		100	99.60
VARV			100	VARV			100

Strains used: MPXV contemporary 2022 VACV MVA VARV India 1967 Antigen conservation is **extraordinarily high** (>90% identity for all antigens)

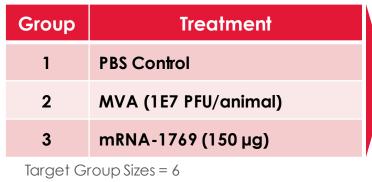

moderno

MRNA-1769 immunogenicity followed by lethal VACV challenge

- 1. Determine the ability of each construct to generate antibody responses, with further depth into functional responses
- 2. Observe dose effect on humoral immune responses
- 3. Preclinical efficacy in BALB/c vaccinia challenge model

Complete protection from VACV challenge after immunization

• BALB/c mice were challenged with one million plaque forming units of VACV Western Reserve by IN delivery


- All PBS treated mice succumbed to infection, while all mice given MVA survived with ~10% body weight loss
- Mice treated with as little as 2 µg mRNA vaccine were completely protected (<5% body weight loss), with less morbidity than MVA

Bernie Moss, NIAID

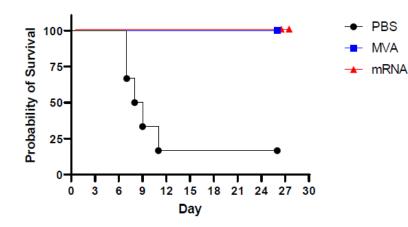
Assessment of mRNA-1769 in a lethal NHP challenge model

	Immunization P			Primary Disease Phase			
77	0 Dose 1		28 Dose 2		56	84	
MPXV Zaire 79 Infection					Х		
Immunization	х		x				
Weight Loss/Lesion Incider	nce				• Daily —	•	
Throat Swabs (qPCR)					• MF	•	
Whole Blood (Viral titer)					• MF	•	
Serum Collection	X	Х	x	Х	x		
Depopulation						X	
	WO		W4		W8	W10	

Total N = 18

Readouts

- Weight loss and lesion Incidence (D56 through EOS)
- Throat swabs and whole blood to be used for virus titer assessment by qPCR and plaque assay respectively (Collection ~MF D56 through EOS)
- Serum collection (prior to immunization) to be used for binding Luminex/PRNT/Functional Ab Readouts (D0 post-acclimation/pre-prime, D28 pre-boost, D56 pre-infection)

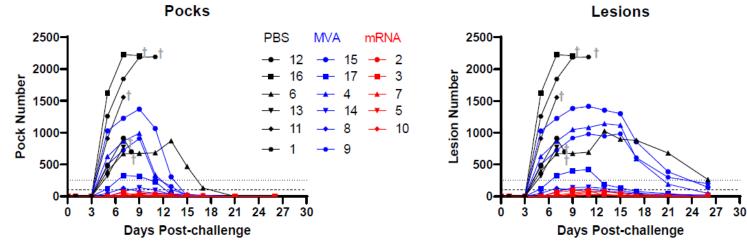


© 2022 Moderna, inc. Confidential. All rights reserved.

18

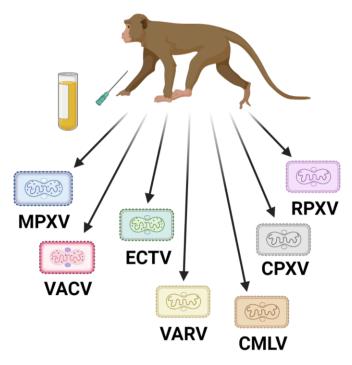
mRNA-1769 preclinical material strikingly reduces morbidity and mortality in Cynomolgus macaques

Survival

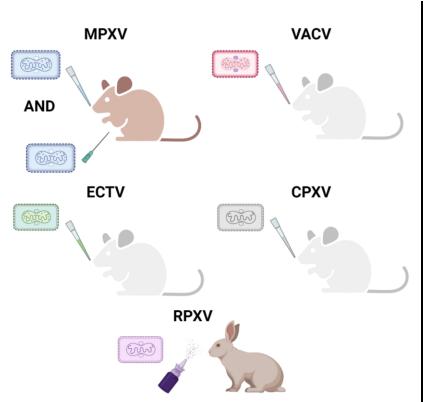


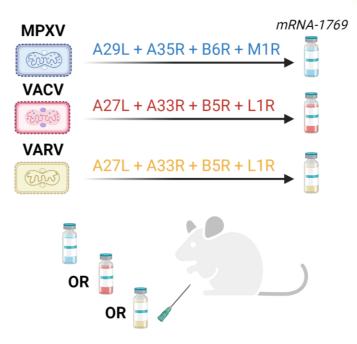
	Mean	Mean	Mean	Mean	
	Maximum	Day of Rash	Day of	Day of	%
Vaccine	Lesion #	Onset	Resolution	Death	Survival
PBS	1448	3.9	>26	8.4	16.7
MVA	607	5.4	24.3	>26	100
mRNA	54	8.6	17	>26	100

- NHPs given either
 vaccine are completely
 protected from mortality
 (IV challenge with 5E7
 PFU/animal MPXV Zaire
 1979)
- NHPs given mRNA-1769 had over a log decrease in lesions compared to MVA (research grade)
- Rash onset was delayed and time to resolution was shortened with mRNA-1769 compared to MVA


moderna

Jay Hooper, USAMRIID


Overall mRNA-1769 strategy for broad Orthopoxvirus indication


Sera from NHPs after dose escalation with mRNA-1769 will be tested against a panel of *Orthopoxviruses*

II. Breadth of mRNA-1769 protection from challenge

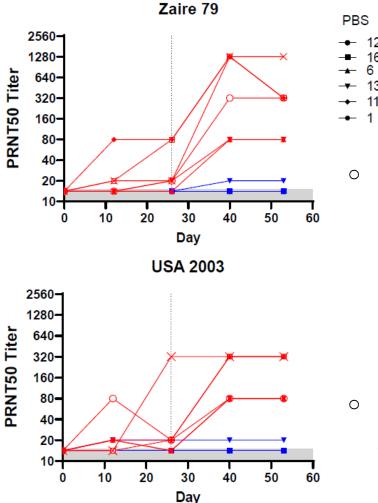
Animals will be immunized with mRNA-1769 and challenged with a panel of *Orthopoxviruses*

III. Comparison of antigens from select Orthopoxviruses

Orthologs of antigens present in mRNA-1769 will be produced preclinically and tested for superior immunogenicity to mRNA-1769 with relevant Orthopoxviruses

And many other generous individuals and partners around the world

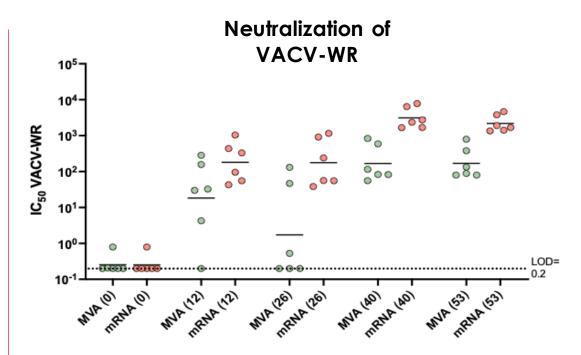
As of March 2021



FRED HUTCH

ANNO 1810

Antibody responses are more potent after mRNA-1796 vaccination than MVA vaccination



1 • 9 • 18 NHPs given mRNA-1769 (preclinical grade) showed potent neutralizing activity against Clade I (Zaire 79) and Clade II (USA 2003) MPXV strains

mRNA

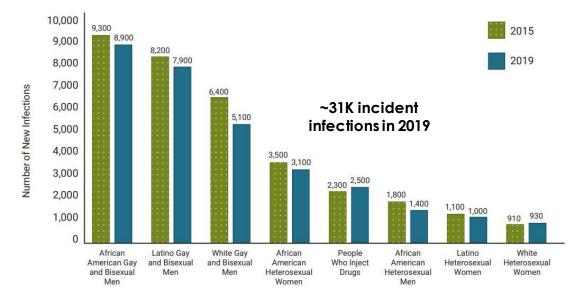
MVA

 Little to no neutralizing activity was elicited by MVA

- All animals are seen to generate neutralization titers after prime with mRNA immunization, while
 MVA titers seem to rapidly wane
- Post boost neutralization titers are stable for both vaccine platforms, though around **one log** higher with mRNA immunization

Bernie Moss, NIAID

Summary of HIV prophylactic vaccine portfolio


- Proof of principle in humans that bnAbs can prevent HIV acquisition against sensitive strains
- Germline targeting approach could enable a protective vaccine by eliciting bnAbs in humans
- mRNA-1644 provides proof of concept in humans for priming specific germlines using mRNA platform

HIV/AIDS is the 5th deadliest pandemic in human history and despite progress in combating it, continues to this day

The Global Burden of HIV/AIDS

Cumulative Deaths	~40 million
2021 Deaths	~650,000
2021 Incident Infections	~1.5 million
People living with HIV	Global ~38 million WHO African Region ~26 million

US Distribution of Incident HIV Infections

- 66% of new HIV infections occur in gay and bisexual men, despite this group accounting for only 2% of the population
- Black/African American and Hispanic/Latino racial/ethnic groups are overrepresented among people living with HIV
- 1.6m global PrEP users despite large addressable population (400m+). Limited use due to high cost (\$20k+/year) and poor compliance