Assessing Impact of Access to mRNA Vaccines in LMICs

Sarah Gilbert
Saïd Professor of Vaccinology, University of Oxford
An Exploding Ebola Outbreak in mid-2014

Cases reported per week
Week of 2014
Ebola in Guinea, Liberia, Sierra Leone
Liberia
Sierra Leone
Guinea
up to 21 September

March 24 May 19

Chris Dye, WHO
Ebola Vaccine Trial Timeline

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 August</td>
<td>Grant application submitted</td>
</tr>
<tr>
<td>26 August</td>
<td>Award letter</td>
</tr>
<tr>
<td>30 August</td>
<td>Vaccine filled</td>
</tr>
<tr>
<td>2 September</td>
<td>Trial file submission to UK regulator</td>
</tr>
<tr>
<td>5 September</td>
<td>Ethics meeting</td>
</tr>
<tr>
<td>8 September</td>
<td>Ethical approval</td>
</tr>
<tr>
<td>9 September</td>
<td>Regulatory approval</td>
</tr>
<tr>
<td>11 September</td>
<td>Vaccine shipping</td>
</tr>
<tr>
<td>15 September</td>
<td>Vaccine labelled</td>
</tr>
<tr>
<td>16 September</td>
<td>Trial contract signed</td>
</tr>
<tr>
<td>17 September</td>
<td>1<sup>st</sup> vaccinee</td>
</tr>
<tr>
<td>18 November</td>
<td>60<sup>th</sup> vaccinee</td>
</tr>
</tbody>
</table>
Declining Case Incidence

Vaccine trials in the outbreak area delayed until April 2015

Only one vaccine was tested: Merck’s VSV-vectored vaccine expressing Ebola glycoprotein

Very high efficacy

Requires ultra-low temperature storage, manufacturing process not scaled-up

J&J vaccine now also licensed

Vaccines cover Ebola Zaire only
<table>
<thead>
<tr>
<th>Virus</th>
<th>Country of first identification</th>
<th>Year of first identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimean Congo haemorrhagic fever (CCHF)</td>
<td>Crimea and Congo</td>
<td>1967</td>
</tr>
<tr>
<td>Ebola</td>
<td>South Sudan and Democratic Republic of Congo</td>
<td>1976</td>
</tr>
<tr>
<td>Marburg</td>
<td>Germany and Serbia (from NHPs imported from Uganda)</td>
<td>1976</td>
</tr>
<tr>
<td>Lassa fever</td>
<td>Nigeria</td>
<td>1969</td>
</tr>
<tr>
<td>SARS-CoV-1</td>
<td>China</td>
<td>2003</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>China</td>
<td>2020</td>
</tr>
<tr>
<td>MERS-CoV</td>
<td>Saudi Arabia</td>
<td>2012</td>
</tr>
<tr>
<td>Nipah</td>
<td>Malaysia</td>
<td>1999</td>
</tr>
<tr>
<td>Rift Valley fever (RVF)</td>
<td>Kenya</td>
<td>1931</td>
</tr>
<tr>
<td>Zika</td>
<td>Uganda</td>
<td>1947</td>
</tr>
<tr>
<td>Severe fever with thrombocytopenia syndrome (SFTS)</td>
<td>China</td>
<td>2009</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>Tanzania</td>
<td>1952</td>
</tr>
<tr>
<td>Hendra</td>
<td>Australia</td>
<td>1994</td>
</tr>
</tbody>
</table>
Middle East Respiratory Syndrome coronavirus (MERS-CoV)

• More than 2250 cases of severe acute respiratory disease, 800 deaths in 27 countries
• Camels are the source of zoonotic infections
 – Occupational exposure can lead to seroconversion
 – Severe disease in the immunocompromised
 – Hospital outbreaks
• Major surface antigen is the Spike (S) protein
ChAdOx1 MERS immunogenicity

Folegatti et al., Lancet Inf Dis 2020
From the ChAdOx1 platform to a vaccine candidate against COVID-19

104 days from sequence to humans

- Vaccine design begins
- First batch of GMP vaccine started
- First human trial begins in UK in 1000 volunteers (Phase I/II)
- Late-stage trial begins in Brazil in ~10,000 volunteers (Phase III) and in South Africa in ~2000 volunteers (Phase I/II)
- Late-stage trials ongoing in more than 30,000 volunteers in the USA (Phase III)
- Japan study starts (Phase I/II)
- India study starts (Phase I/II)
- Russia study starts (Phase III)
- Kenya study starts (Phase I/II)
- Authorized for use in India and the EU
- Authorized for emergency supply in the UK
- Authorized for emergency use by WHO
- Pediatric trial announced

WHO declares public health emergency of international concern
Virus genetic sequence available
First cases outside mainland China
First human trial begins in UK in 1000 volunteers (Phase I/II)
Late-stage trial begins in more than 10,000 volunteers in UK (Phase II/III)
Late-stage trial begins in Brazil in ~10,000 volunteers (Phase III) and in South Africa in ~2000 volunteers (Phase I/II)
Late-stage trials ongoing in more than 30,000 volunteers in the USA (Phase III)
Japan study starts (Phase I/II)
India study starts (Phase I/II)
Japan study starts (Phase I/II)
Authorized for emergency supply in the UK
Authorized for emergency use by WHO
Pediatric trial announced

Worldwide cases pass 100 million
Worldwide cases pass 10 million
Worldwide cases pass 5 million
First cases outside mainland China
Virus genetic sequence available

Collaboration has made this possible

EU = European Union; GMP = Good Manufacturing Practices; UK = United Kingdom; USA = United States of America; WHO = World Health Organization.

Equitable access strategy delivers vaccine at no profit to over 170 countries: over 25 manufacturers in 15 countries

- Parallel supply agreements to ensure global access.

- First AZ vaccine doses not yet delivered
- First AZ vaccine doses have been delivered

- Countries eligible to receive AZ vaccine through COVAX

- Continued engagement with int'l orgs and gov'ts to drive equitable access
Supporting equitable access, globally

Key points

• 128 approvals and emergency authorisations in ~100 countries to date
• More than 2.8 billion doses released for supply to 180 countries
• Collaboration with more than 20 partners across over 15 countries
• 424 million doses to approx 130 countries via COVAX
• Approx. 2/3 doses to low and lower middle income countries
Of the first 38 million doses administered via Covax, 37 million doses were ChAdOx1 nCoV-19
Vaccine effectiveness data

• Public Health England data released March 1st.

• In England, in over 70s who have received one dose, from 28 days, at least 60% protection against symptomatic PCR +ve disease (ChAdOx1 nCoV-19 and also BNT162b2)

• In over 80s, hospitalisation reduced by 80% (ChAdOx1 nCoV-19 and also BNT162b2)

• Deaths in over 80s reducing faster than in younger age groups (combined effect of ChAdOx1 nCoV-19 plusBNT162b2)
Why produce mRNA vaccines in LMICs?

In outbreak/epidemic scenarios
- Rapid access
- Rapid deployment
- Ability to control pricing
- Independent planning of vaccine development and stockpiling
 - or plans for rapid production when needed

For routine vaccination programmes
- Control of supply locally
- Ability to control pricing
- Development of sustainable industry
- Advancement of the technology is possible
 - Ambient temperature storage?
 - Mucosal delivery?
What challenges can be expected?

• Intellectual Property
• Regulatory concerns
 • Local regulatory capacity must be strengthened
 • Distributed manufacturing results in a complex situation for regulators
 • Ultra-local manufacturing presents further challenges
• For routine vaccinations, prices may be higher
• Secure supply of raw materials
• For outbreak pathogens,
 • how to prioritise? Local planning.
 • how to plan for efficacy testing? Global planning.
 • how to plan for rapid response? Local and global planning.
• Facilities must be ‘kept warm’
• Should livestock vaccines be produced and rolled out?
PANDEMIC SCIENCES INSTITUTE (PSI)

• The Pandemic Sciences Institute will draw upon lessons learnt from COVID-19 pandemic to identify and counter future pandemic threats
• Partnership between academia, industry & public health organisations across the world
• Create science-led innovations to
 • accelerate the understanding
 • develop new diagnostics, treatments, vaccines & digital control tools
• Focus on equitable access