

Assessing Impact of Access to mRNA Vaccines in LMICs

Sarah Gilbert
Saïd Professor of Vaccinology, University of Oxford

An Exploding Ebola Outbreak in mid-2014

Ebola Vaccine Trial Timeline

14 August Grant application submitted

26 August Award letter

30 August Vaccine filled

2 September Trial file submission to UK regulator

5 September Ethics meeting

8 September Ethical approval

9 September Regulatory approval

11 September Vaccine shipping

15 September Vaccine labelled

16 September Trial contract signed

17 September 1st vaccinee

18 November 60th vaccinee

Declining Case Incidence

Vaccine trials in the outbreak area delayed until April 2015

Only one vaccine was tested: Merck's VSV-vectored vaccine expressing Ebola glycoprotein

Very high efficacy

Requires ultra-low temperature storage, manufacturing process not scaled-up

J&J vaccine now also licensed

Vaccines cover Ebola Zaire only

Outbreak Pathogens

Virus	Country of first Year of fir identification	
Crimean Congo haemorrhagic fever (CCHF)	Crimea and Congo	1967
Ebola	South Sudan and Democratic Republic of Congo	1976
Marburg	Germany and Serbia (from NHPs imported from Uganda)	1976
Lassafever	Nigeria	1969
SARS-CoV-1	China	2003
SARS-CoV-2	China	2020
MERS-CoV	Saudi Arabia	2012
Nipah	Malaysia	1999
Rift Valley fever (RVF)	Kenya	1931
Zika	Uganda	1947
Severe fever with thrombocytopaenia syndrome (SFTS)	China	2009
Chikungunya	Tanzania	1952
Hendra	Australia	1994

Middle East Respiratory Syndrome coronavirus (MERS-CoV)

- More than 2250 cases of severe acute respiratory disease, 800 deaths in 27 countries
- Camels are the source of zoonotic infections
 - Occupational exposure can lead to seroconversion
 - Severe disease in the immunocompromised
 - Hospital outbreaks
- Major surface antigen is the Spike (S) protein

ChAdOx1 MERS immunogenicity

Dose Group	% Seropositivity						
	DO	D14	D28	D56	D182	D364	
Group 1 (n=6)	17% (1)	50% (3)	83% (5)	83% (5)	67% (4)	60% (3)	
Group 2 (n=9)	33% (3)	78% (7)	89% (8)	89% (8)	78% (7)	63% (5)	
Group 3 (n=9)	0% (0)	89% (8)	100% (9)	100% (9)	89% (8)	83% (5)	

Numbers in parenthesis represent total seropositive individuals

Folegatti et al., Lancet Inf Dis 2020

From the ChAdOx1 platform to a vaccine candidate against COVID-19

EU = European Union; GMP = Good Manufacturing Practices; UK = United Kingdom; USA = United States of America; WHO = World Health Organization.

1. COVID-19 Dashboard. Johns Hopkins University website. Accessed June 25, 2020; 2. Noved coronavirus situation report — 1. World Health Organization website. Accessed June 22, 2020; 3. University of Oxford press release. Published March 18, 2020; 4. Global research and innovation forum consensus. World Health Organization website. Accessed June 22, 2020; 5. University of Oxford press release. Published February 7, 2020; 6. COVID-19 situation report — 51. World Health Organization website. Accessed June 22, 2020; 7. Study NCT04324606. ClinicalTrials.gov website; 8. Study NCT04400838. ClinicalTrials.gov website; 9. University of Oxford press release. Published June 28, 2020; 10. Study NCT0444674. ClinicalTrials.gov website; 11. Study NCT04540031. ClinicalTrials.gov website; 13. Study NCT045604. ClinicalTrials.gov website; 13. Study NCT045606. ClinicalTrials.gov website; 15. University of Oxford press release. Published October 30, 2020; 16. AstraZeneca press release. Published February 15, 2021; 20. University of Oxford press release. Published February 15, 2021; 20. University of Oxford press release. Published February 15, 2021; 20. University of Oxford press release. Published February 15, 2021; 20. University of Oxford press release. Published February 15, 2021; 20. University of Oxford press release. Published February 15, 2021; 20. University of Oxford press release.

Equitable access strategy delivers vaccine at no profit to over 170 countries: over 25 manufacturers in 15 countries

ŒPI

Supporting equitable access, globally

Key points

- 128 approvals and emergency authorisations in ~100 countries to date
- More than 2.8 billion doses released for supply to 180 countries
- Collaboration with more than 20 partners across over 15 countries
- 424 million doses to approx
 130 countries via COVAX
- Approx. 2/3 doses to low and lower middle income countries

Covax Rollout: Ivory Coast, 1st March 2021

Of the first 38 million doses administered via Covax, 37 million doses were ChAdOx1 nCoV-19

Vaccine effectiveness data

- Public Health England data released March 1st.
- In England, in over 70s who have received one dose, from 28 days, at least 60% protection against symptomatic PCR +ve disease (ChAdOx1 nCoV-19 and also BNT162b2)
- In over 80s, hospitalisation reduced by 80% (ChAdOx1 nCoV-19 and also BNT162b2)
- Deaths in over 80s reducing faster than in younger age groups (combined effect of ChAdOx1 nCoV-19 plusBNT162b2)

Why produce mRNA vaccines in LMICs?

In outbreak/epidemic scenarios

- Rapid access
- Rapid deployment
- Ability to control pricing
- Independent planning of vaccine development and stockpiling
 - or plans for rapid production when needed

For routine vaccination programmes

- Control of supply locally
- Ability to control pricing
- Development of sustainable industry
- Advancement of the technology is possible
 - Ambient temperature storage?
 - Mucosal delivery?

What challenges can be expected?

- Intellectual Property
- Regulatory concerns
 - Local regulatory capacity must be strengthened
 - Distributed manufacturing results in a complex situation for regulators
 - Ultra-local manufacturing presents further challenges
- For routine vaccinations, prices may be higher
- Secure supply of raw materials
- For outbreak pathogens,
 - how to prioritise? Local planning.
 - how to plan for efficacy testing? Global planning.
 - how to plan for rapid response? Local and global planning.
- Facilities must be 'kept warm'
- Should livestock vaccines be produced and rolled out?

PANDEMIC SCIENCES INSTITUTE (PSI)

- The Pandemic Sciences Institute will draw upon lessons learnt from COVID-19 pandemic to identify and counter future pandemic threats
- Partnership between academia, industry& public health organisations across the world
- Create science-led innovations to
 - accelerate the understanding
 - develop new diagnostics, treatments, vaccines & digital control tools
- Focus on equitable access

